Valuing Asset Insurance in the Presence of Poverty Traps: A Dynamic Approach

Sarah A. Janzen, Michael R. Carter and Munenobu Ikegami

March 2012

Abstract:

Ample evidence exists to suggest that nonlinear asset dynamics can give rise to an environment of poverty traps. When dynamic asset thresholds matter, asset insurance offers great promise for managing risks that vulnerable households face. In this paper, we use dynamic programming techniques to generate an option value measure of welfare gains attributable to asset insurance in this context. In particular, we analyze how insurance influences dynamically optimal behavior near a critical asset threshold. Similar to other studies, we find that households with asset levels near a critical asset threshold will choose low levels of insurance due to a high shadow price of liquidity. However, unlike previous studies, we show that the very presence of a formal insurance market actually encourages greater investment by “threshold” households. This investment comes from the hope of reduced vulnerability that insurance offers in the future. Finally, we use our model to make predictions about the value of index-based livestock insurance (IBLI) in Marsabit district of northern Kenya. Our results suggest that these behavioral changes brought about by insurance may result in decreased poverty levels over time.

Sarah Janzen is a Ph.D. candidate in the Department of Agricultural and Resource Economics at the University of California, Davis. Michael Carter is a Professor in the Department of Agricultural and Resource Economics at the University of California, Davis. Munenobu Ikegami is a post-doctoral scientist at the International Livestock Research Institute in Nairobi, Kenya. We thank the BASIS Research Program on Poverty, Inequality and Development and UKaid (Department for International Development) for financial support. We also thank seminar participants at the 7th International Microinsurance Conference and the I4 Technical Meeting 2011 for helpful comments. All errors are our own.
1 Introduction

Northern Kenya’s arid and semi arid lands are home to more than 3 million pastoralist households who depend primarily on livestock as their main livelihood. The risk of drought renders herds in this area susceptible to significant livestock mortality shocks, resulting in pronounced income and asset shocks to the pastoralist’s household. There is growing evidence that such asset shocks can have permanent consequences if asset levels drop below a critical threshold. Index-based insurance products offer great promise for managing climate-related risks that vulnerable households face.

Such index-based risk transfer products have become quite popular in development research, and have the potential to influence poverty dynamics in critical ways. In this paper we analyze how asset levels and a particular index-based insurance product together influence dynamically optimal behavior at or around an asset threshold. In January 2010 the index-based livestock insurance (IBLI) pilot project was launched in Marsabit District of northern Kenya, and approximately 2,000 contracts were purchased. This paper presents a theoretical dynamic demand analysis of index based livestock insurance (IBLI). Dynamic programming techniques are used to generate an option value measure of the welfare gains attributable to the availability of IBLI for individuals with various asset levels. While we restrict our analysis to the context of livestock insurance, the findings can be applied more broadly to asset insurance in a context of asset-based poverty traps.

Vulnerable households should have a higher option value for insurance if IBLI prevents such households from falling into a poverty trap for which there is no escape. This effect of insurance as a safety net against collapse has been demonstrated theoretically by both Chantarat et al. (2010) and Kovacevic and Pflug (2010). However, these two papers fail to consider a second albeit critical behavioral effect of insurance in the presence of poverty traps. As pastoralism becomes less risky on account of insurance, some individuals may choose to invest in higher risk, higher return activities. Ikegami et al. (2011) supplements the Chantarat et al. (2010) study by analyzing the endogenous behavioral effects of IBLI. In a more general study, de Nicola (2011) shows that the welfare gains attributable to weather insurance are in part due to changes in optimal consumption and investment decisions. However, to the authors’ knowledge no paper to date has considered the behavioral effects of index insurance while explicitly accounting for poverty traps.

If the optimal investment changes with insurance, then not only are vulnerable households prevented from total collapse, but in addition the asset threshold may shift in such a way that a greater number of individuals are able to reach a higher level asset equilibrium. Such a result contrasts the Chantarat et al. (2010) and Kovacevic and Pflug (2010) studies who both show that households at or just below the asset threshold are vulnerable to collapse if paying the premium pushes them below the asset threshold. If households around the threshold level can gain from insurance, then important implications for development policy become apparent. Furthermore, our model provides testable empirical hypotheses in that we predict demand for asset insurance as a nonlinear function of assets. In this way, our theoretical model lends itself nicely to direct empirical study.

The rest of this paper is structured as follows: Section 2 provides an extensive review of the related literature. To better understand the context we first discuss the importance of risk in a world of poverty traps before discussing the potential benefits of index insurance. We
also review the small literature regarding demand for index insurance products in developing countries. In general, demand has been much lower than anticipated. When demand is especially low, identifying the factors suppressing demand becomes complicated, which may help to explain a gap in the literature related to empirical demand analyses of index insurance products. Since demand for IBLI in its first year of the pilot was relatively high, this research hopes to address this gap by using the theoretical model presented in Section 3 to develop an empirical model for IBLI demand. This theoretical model of demand for index based livestock insurance carefully accounts for herd dynamics and optimal decision making over time in the presence of a structural poverty trap.

Throughout Section 4 we consider the case of mandated permanent insurance, where optimal choice rests in consumption and investment decisions only. Here we can think of the mandated insurance as a household’s “pre-commitment” to a lifetime of full insurance, ruling out any dynamic mixed strategies. In sections 4.1 and 4.2 we provide a discussion of the results of the numerical analysis including the optimal herd accumulation paths over time and a dynamic option value for IBLI in this scenario. Our results suggest that the welfare gains from IBLI for a given household stem from four primary features. First, we find that in the presence of an insurance market fewer herds are vulnerable to collapsing to a low level equilibrium. Second, the the asset level below which households fall to a poverty trap shifts. Third, the average high level equilibrium is substantially higher with insurance. Finally, households are better able to smooth both assets and consumption.

In Section 5 we relax the assumption of permanent insurance, and consider a household’s optimal insurance decision. We find that while trapped households may not choose to purchase insurance, the presence of a permanent insurance market makes increased investment optimal. Our unique contribution stems from recognizing the importance of this behavioral change induced by insurance in altering poverty dynamics.

In Section 6 we then use the empirical herd distribution in Marsabit to consider the implications our model poses for poverty dynamics in northern Kenya. Section 7 closes with some concluding remarks.

2 Review of the Literature

2.1 Poverty Traps and Risk

As economists we often think of the poorest of the poor as being those households who are “trapped” in poverty. The income of these households lies below some poverty threshold, which makes it difficult for them to “pull themselves up by their bootstraps.” Instead, these households remain trapped in their current state unable to reach a higher equilibrium. Bowles, Durlauf and Hoff (2006), and Dercon (2003) provide nice literature reviews of the theory of poverty traps.

One special class of poverty trap requires the existence of multiple dynamic equilibrium, and is characterized by at least one critical threshold above which the expected dynamics of the system lead to positive asset accumulation, and below which the decumulation of assets prevails. For this type of poverty trap, uninsured risk can affect the poor in two distinct ways: ex ante and ex post. Ex ante, poverty traps may induce households to misallocate
resources toward activities with lower risk but lower return in order to minimize risk. *Ex post*, a random shock can be catastrophic if it causes significant asset losses which drop the household below the asset threshold, sometimes resulting in malnutrition, children being removed from school, displacement of families and other undesirable effects (Alderman and Haque 2007, Skees and Collier 2008). In a world of substantial asset shocks, a single negative shock can permanently force a household off a positive growth trajectory toward a low level equilibrium (Barrett et al. 2007).

Missing financial markets for both credit and insurance amplify the problem of uncertainty. If financial institutions exist such that people can insure against shocks *ex ante* or borrow *ex post* (thereby achieving quasi-insurance) the undesirable effects of risk can be attenuated. However, missing financial markets are ubiquitous in developing countries, the unfortunate result of poor contract enforcement mechanisms, information asymmetries, high transaction and monitoring costs, and covariate risk exposure (Barnett, Barrett and Skees 2008, Alderman and Haque 2007).

Empirical evidence suggests that the risk of drought renders pastoralist households in East Africa vulnerable to large herd mortality shocks, and therefore large income shocks as well. In addition, because a pastoralist’s main livelihood rests in livestock, evidence of nonconvex asset dynamics suggests that this context provides a unique opportunity to study poverty traps. Recent qualitative fieldwork in Marsabit suggests that northern Kenyans can recognize this “poverty trap” phenomenon and many are able to provide examples of households which are trapped by a small and stagnant herd size.

In nearby southern Ethiopia Lybbert et al. (2004) report direct empirical evidence of poverty traps in herd accumulation of pastoralists. Their study shows that after a shock, only one third of households below a certain threshold were able to recover 95% of their losses after three years. This result can be compared to medium size herds which were expected to recover fully and large herds which were expected to recover at least up to a high level equilibrium point. The paper suggests herd dynamics with two asset-based thresholds. Below the lower threshold, herds are expected to have negative growth leading to a low level equilibrium (herd collapse). Above the lower threshold, but below an upper threshold, herds on average show near constant growth. (In this paper, we argue that in a risky environment, these households are vulnerable to collapse.) If herd size is above the upper threshold, then positive growth toward a high level equilibrium is achieved. Sieff (1998) describes similar herd dynamics in a study of Datoga pastoralists in Tanzania.

The driving forces behind the herd dynamics just described are unclear. In the absence of insurance or credit markets, a risky environment may present an incentive for households to use livestock in order to smooth consumption. Dercon (1998) presents a model in which the need for consumption smoothing requires offtake of livestock to buy food during periods of income shortfalls. This also depletes the savings necessary for further investment in livestock. Furthermore, once herds collapse, households are forced into low-risk, low-return production activities which “traps” households at a low level equilibrium. This finding supports a plethora of research that has shown that poor households tend to adopt low-risk, low-return strategies for using productive assets in response to uncertainty. However, an empirical study by Fafchamps et al. (1998) suggests that livestock in the West African semi-arid tropics are not used to smooth consumption as is commonly thought. This is supported by a growing literature suggesting that nonconvex asset dynamics may create incentives to
smooth assets rather than consumption. This literature suggests that individuals may choose against liquidating assets in order to smooth consumption if the alternative is expected to push them below a threshold at which asset dynamics will cause further exogenous asset loss (Zimmerman and Carter 2003, Lybbert and Barrett 2010, Barrett et al. 2006).

Another possible mechanism leading to poverty traps in this situation is the biological capacity of livestock regarding both mortality and birth. For example, Sieff (1998) reports a negative relationship between herd size and mortality. Both Sieff (1998) and Upton (1986) find that households with large herds milk a smaller proportion of the herd and less milk per cow, which puts less stress on the herd potentially resulting in a lower mortality rate for large herds. On the contrary, Lybbert et al. (2004) find that mortality, the dominant regulator of herd size, is an increasing function of herd size.

Dercon (1998) shows that because investment in livestock is discrete, (i.e. livestock investment is a “lumpy” investment) it is harder for the poor to enter into livestock production especially in the absence of credit markets. This could be seen as yet another driving force of poverty trap dynamics. Others have cited the importance of risk aversion in the determination of the apparent poverty trap. While the structural causes remain unclear, empirical evidence suggests that an asset threshold exists, such that some herders are pushed out of pastoralism if they no longer have enough animals upon which to survive. These households must migrate to towns in search of food aid or other ways to make money to support themselves (McPeak and Barrett 2001, Little et al. 2001, Little et al. 2008, Toth 2010).

2.2 Benefits of Index-based Risk Transfer Products

The existence of an asset-based poverty trap presents a troubling dimension of dynamic vulnerability for households in this type of environment. Index-based insurance products offer great promise for managing climate-related risks that these vulnerable households face. Such products have the potential to address both the \textit{ex ante} and \textit{ex post} effects of climate risks. First, properly designed insurance contracts should shift the burden of risk avoidance in order to encourage greater investment in activities with higher risk and higher expected payoffs. Second, insurance can act as a safety net, protecting vulnerable households from collapse toward a low level equilibrium (Barrett et al. 2007, Skees and Collier 2008).

Barrett, Carter and Ikegami (2008) use a stochastic dynamic programming model which clearly demonstrates both the \textit{ex ante} and \textit{ex post} effects of more general social protection programs. They show that threshold-targeted social protection programs which account for the poverty trap mechanism may help to eliminate needless poverty by preventing collapse to a low level equilibrium while boosting growth through endogenous asset accumulation and technology adoption.

Index insurance is an example of a social protection program to which the Barrett et al. model applies. It differs from traditional insurance in that the indemnity payments are based on an indicator which is outside the influence of the insured. Such products have many benefits over traditional insurance, including lower transaction costs and fewer asymmetric information problems which eliminate or greatly reduce adverse selection and moral hazard problems. Index insurance contracts are designed to transfer covariate risk from a vulnerable local population into international financial markets (Barnett, Barrett and Skees 2008). This study looks at a particular index-based risk transfer product, index-based livestock insurance
(IBLI), (Chantarat et al. 2007, Chantarat et al. 2009b) and assesses its dynamic role in counteracting uncertainty in the presence of poverty traps in northern Kenya.

We hypothesize that index-insurance should be particularly valuable for households around an asset threshold. Clearly, effective insurance policies should prevent a vulnerable population from catastrophic collapse to a low level equilibrium. Furthermore, the reduction in risk brought about by insurance may stimulate investment in higher return (albeit higher risk) activities (de Nicola 2011). If this happens, we should also see a shift in the poverty threshold. Theoretical evidence suggests that perceptions of asset thresholds can induce a risk response (Lybbert and Barrett 2007 and Lybbert and Barrett 2010). Empirical evidence in support of this theory is also provided in Carter and Lybbert (2010) who demonstrate the existence of an asset threshold in Burkina Faso, which divides asset smoothers from consumption smoothers. Indeed, we might expect dynamically optimizing poor agents to take steps to stabilize their asset portfolio by allowing consumption to vary in the short run (Zimmerman and Carter 2003). By maintaining asset levels (in our case livestock), future income (rather than consumption) is smoothed. Better still, agents just below the poverty threshold may decide to forgo current consumption in the short run in order to improve their asset portfolio if it pushes them over the threshold and onto the higher level equilibrium path. This contrasts to the household’s decision in the absence of insurance, where the risk of negative shocks makes such sacrifices seem useless. This endogenous ex ante effect may actually cause the implicit poverty threshold, or “Micawber Threshold” below which agents tend toward a poverty trapped low level equilibrium, to shift in a way such that a greater number of households move toward the higher level equilibrium.

Chantarat, Mude, Barrett and Turvey (2010) are among the first in attempting to analyze the value of index insurance in the presence of poverty traps. Using the same context that we study here, they model herd dynamics as a function of various stochastic processes, and simulate wealth/herd dynamics using rich panel and experimental data from the region. They assume the existence of a threshold herd size, above which the herd will expand, and below which the herd will shrink.

Their theoretical model shows that IBLI does little for pastoralists with beginning herd size below a critical threshold. In addition, paying premiums may even accelerate herd collapse. This is because in the case of no indemnity payment, households have given up a valuable portion of their limited income. Alternatively, in the case that an indemnity payment is paid, these households will have insured so few animals that even the indemnity payment is unlikely to be large enough to push them over the threshold. They are, in essence, trapped.

Contrary to our hypothesis, the same study finds mixed results for households near the poverty threshold. Three scenarios are possible for these vulnerable households. In the first scenario, the household pays the premium and the weather turns sour, so an indemnity payout is received and decumulation is averted. The household’s welfare is improved, and they are on a positive herd growth trajectory toward a high level equilibrium. In the second scenario, the household makes a payment which drops them below the threshold. If nature provides good weather then no indemnity payment is received and the household is now on a path of decumulation toward the low level equilibrium. If the household is near the threshold but paying the premium doesn’t drop them below the threshold then they have the most to gain, because IBLI now provides a safety net against catastrophic collapse.
These findings are similar to a more mathematical treatment of the same question by Kovacevic and Pflug (2010). Their ruin theoretic approach shows that for households with capital above but near the critical asset threshold, the probability of collapse to a low level equilibrium increases with the introduction of insurance since the premium payments reduce the ability to create growth.

A critical limitation of the Chantarat et al. (2010) and Kovacevic and Pflug (2010) studies is that they both ignore behavioral choice, focusing instead on herd size as a state variable which follows a stochastic path to determine each household’s future welfare path. In doing so, the models ignore the endogenous \textit{ex ante} effect of the risk reduction brought about by insurance. Cai et al. (2010) find empirical evidence of an endogenous \textit{ex ante} effect of insurance in China, where formal insurance increases farmer’s tendency to invest in risky sow production. Alderman and Haque (2007) argue that it “is more a matter of the degree to which behavior is modified rather than if it changes,” suggesting that the Chantarat et al. (2010) and Kovacevic and Pflug (2010) models may be overlooking an important component in the value of insurance.

Ikegami, Barrett and Chantarat (2011) address this limitation by proposing another model of dynamic investment and purchasing decisions for IBLI. Their study looks at how much household intertemporal behavior will change in the presence of IBLI, and then compares welfare levels with and without the availability of IBLI. While explicitly modeling many details of the IBLI contract, the Ikegami et al. study does not account for poverty traps, and as such cannot capture the value associated with a reduction in the vulnerability of collapse to a permanent low-level equilibrium.

This paper makes a unique contribution to the literature by explicitly modeling dynamically optimal behavior on account of IBLI in the presence of poverty traps. This analysis is critical for understanding the total effects of IBLI and other similar products seeking to reduce risk as a poverty alleviation strategy.

2.3 Demand for Index-based Insurance

Griliches seminal 1957 paper on the economics of agricultural technology adoption suggests an s-shaped model of technological adoption where adoption begins with only a handful of people. This slowly spreads throughout a population as additional people begin to accept the new technology. This is followed by a period of rapid adoption where the remaining population of un-adopters also choose to adopt the new agricultural technology. Early adopters are in essence risk takers, experimenting with a new technology before its true value has been demonstrated.

Index insurance adoption in developing countries seems to be exhibiting a similar pattern. Early participation with index insurance products has generally been low. When demand is especially low, identifying the factors suppressing demand becomes complicated, which may help to explain a gap in the literature related to empirical demand analyses of index insurance products. Giné et al. (2010) provides a nice synthesis of the literature on the topic supplemented by empirical findings from a case study of rainfall index insurance in India (Giné et al. 2008, Cole et al. 2010), offering a list of seven primary factors thought to limit demand.
1. **Price**- For obvious reasons we expect a higher price to be associated with lower demand. For the India case study, Cole et al. (2010) find a price elasticity of .66 - .88, demonstrating that price is indeed a significant factor influencing demand.

2. **Availability of alternative risk-sharing arrangements**- If households have access to alternative informal insurance arrangements then the value of formal insurance decreases and we expect lower demand. Sakurai and Reardon (1997) present a model of potential demand for drought insurance in Burkina Faso and suggest that the availability of food aid creates a moral hazard problem, decreasing demand for insurance. However, empirical evidence of this factor affecting realized demand is lacking.

3. **Risk aversion and basis risk**- It is generally held that farmers’ aversion to risk affects the composition of their asset portfolio (see Rosenzweig and Binswanger 1993). It is therefore natural that we would expect demand to be increasing in risk aversion. Similarly, we expect demand to be declining in basis risk. That is, we expect demand to increase as the correlation between realized losses and insurance payoffs increases. As a further extension, it is possible for farmer perceptions about the insured risk to differ from the information used to price the contract, in which case expected basis risk differs from the true basis risk. Mullally (2011) shows that such dissonance can negatively affect demand.

4. **Liquidity constraints**- Seasonality is an important issue in agricultural settings, and often induces a binding liquidity constraint at certain critical times of the year. Thus, even households with a high willingness-to-pay for insurance may lack the liquid assets necessary to purchase insurance during sale periods. Giné et al. (2008) and Cole et al. (2010) both find that insurance demand is positively correlated with wealth. In addition, randomly relaxing the liquidity constraint by offering various payment levels to respondents for time spent with an insurance educator significantly increases demand.

5. **Understanding and learning**- Foster and Rosenzweig (1995) suggest that imperfect knowledge about a new product can be a significant barrier to adopting a new technology. This is certainly likely to apply to index insurance, a complicated financial product with little precedence in remote regions of developing countries where many people lack formal education. While Giné et al. find no evidence that financial education increases takeup, Foster and Rosenzweig suggest that people are likely to learn from others’ experiences with new technologies, implying that the learning process may occur over long periods of time.

6. **Trust**- In order for insurance to be of any value, the insured must have trust in the insurance provider that a payment will be reliably made when it is supposed to. The India case study finds that endorsement of the insurance product by a trusted local individual significantly increases demand. Cai et al. (2010) similarly find evidence that trust in the institution associated with a microinsurance program in southwestern China is an important determinant of demand.
7. **Framing and behavioral influences** - Recent advances in behavioral economics suggests that subtle changes in the way a contract is presented could significantly influence demand. The India case study tests for a number of behavioral biases and framing effects, but does not find evidence of any influence on takeup rates.

These factors together have been hypothesized to influence demand, but empirical evidence is limited at best. In this paper, we seek to build a theoretical foundation for empirically analyzing demand for IBLI. We would expect realized demand to match the results of our simulations if our model is correct and outside barriers such as those discussed here do not exist.

3 **A Dynamic Model of IBLI**

In this section we present a household model of index based livestock insurance in the presence of risk and poverty traps. The model assumes that all output prices are given and constant. While the price of livestock is bound to change, and likely to be correlated with the weather, this simplification is necessary to build the basic intuition behind the model.\(^1\)

Each household has an initial endowment in the form of a livestock herd \((H_0)\). In order to aggregate a herd of mixed livestock which is common in this region, we use tropical livestock units (TLU) so that a herd can consist of cattle (1 TLU), camels (1.4 TLU), goats or sheep (.1 TLU each). Herd loss is dictated by a mortality function which depends on a random aggregate shock \((\theta_t)\), which is realized for all households at the end of the period, an idiosyncratic shock \((\epsilon_t)\) specific to the herd, and herd size in a given period \((H_t)\). We assume the mortality function follows:

\[
m(\theta_t, \epsilon_t, H_t) = \left(\frac{\min\{\theta_t, 0\}}{\theta} - \frac{\epsilon_t + m}{m} \right) H_t
\]

where shocks are negative, \(\theta\) represents the worst possible shock or the minimum possible value of \(\theta\), \(0 \leq m \leq 1\) and \(m\) is average herd mortality in good conditions (i.e. in the absence of a negative covariate shock.) Note that the mortality function is assumed to be decreasing in \(\theta_t\) and \(\epsilon_t\), so that limited rainfall or a negative idiosyncratic shock both result in higher mortality.

Herd losses also produce a flow of benefits \(f(H_t)\). Following Dercon (1998) the flow function can be thought of as a livestock production function.\(^2\) This flow (or production) function encompasses livestock births as well as “flows” such as milk products, which are the primary staple for people in this area.

Households face a tradeoff between consumption today and investing in the herd for future consumption. The tradeoff is particularly stark in our model since credit markets are assumed to be absent. Under these assumptions, and in the absence of formal insurance,

\(^1\) We acknowledge that price risk is an important factor in this setting. Future analysis will relax this assumption, and consider making price an equilibrium phenomenon.

\(^2\) Perhaps more realistically, flows could also be a function of an idiosyncratic or covariate shock, but to keep things simple for now we leave it as deterministic.
herd dynamics are captured by the following equation of motion:

\[H_{t+1} = H_t + f(H_t) - m(\theta_t, \epsilon_t, H_t) - c_t \] (2)

The tradeoff is captured in this: a household can consume all the flows in a given period, but then the herd will be smaller in the next period if mortality is greater than zero. Similarly, the household can consume more than the flows. For example, the household could choose to slaughter part of the herd for consumption. Divestment occurs if the household consumes all the flows and part of the herd. Whatever portion of the flows is leftover after consumption can be thought of as an investment back into the herd.

Let us now consider insurance. If the household chooses to purchase insurance for the next season, it must pay a premium equal to the price of insurance (p) times the number of TLU insured (I_t).\(^3\) If the index is such that a payout is made, then the household also receives the indemnity payment (\(\delta_t\)) times the number of TLU insured. Timing is critical here. The household’s decision today, \(I_t\), is whether or not to insure the herd for the following season. Similarly, the payout is based on the previous period’s insurance purchase decision(\(I_{t-1}\)). This can be incorporated directly into the equation of motion for the herd:

\[H_{t+1} = H_t + f(H_t) - m(\theta_t, \epsilon_t, H_t) - c_t - pI_t + \delta_t(i_t(\theta_t))I_{t-1} \] (4)

The household doesn’t know in advance if the insurance index \(i\) will cause the insurance to pay out in the following period. This risk enters through the random variable \(\theta_t\), which is realized for all households at the end of time \(t\). Hence, \(\theta_t\) can be thought of as a negative covariate shock. More explicitly, if we think of \(\theta_t\) as weather at time \(t\), then we also assume that \(\delta i / \delta \theta < 0\). That is, lower levels of rainfall (or more negative shocks) cause the index to increase. Hence, \(\delta_t\) can be written as a function of the index \(i_t\) which depends on \(\theta_t\). The insurance contract specifies that an indemnity payout will be made if the index exceeds a certain strike point (\(s\)). In this way, the indemnity payment can be written as:

\[\delta_t = \max ((i_t(\theta_t) - s)VL, 0) \] (5)

where \(VL\) is the value of one TLU. Note that both \(VL\) and \(s\) are known by the household in advance of the decision and assumed to be constant for this problem.

A notable feature of index insurance is that the insurance contract and indemnity payments are based on an aggregate index, rather than individual outcomes, a feature made clear by the definition of \(\delta_t\). In this case, both the mortality function and the index depend on the covariate shock. While they are positively correlated, they need not be perfectly correlated. The difference between individual livestock mortality and the index (which can

\(^3\)In theory, the household can choose how many livestock to insure, but it should not be allowed to insure more livestock than it owns. That is, the number of tropical livestock units (TLU) insured for the next season \((I_t)\) must be less than or equal to the current period herd size \((H_t)\):

\[I_t \leq H_t \] (3)

Note that in practice this constraint is extremely difficult to enforce, and hence it will be ignored throughout this analysis. Furthermore, Alderman and Haque (2007) point out that laborers and merchants whose incomes are indirectly linked to (livestock) production could, in principal, choose to purchase insurance at a level commensurate with the laborer’s perceived exposure to a given shock.
be thought of as predicted livestock mortality) represents basis risk. Hence, risk enters the problem in three distinct ways: the covariate shock θ_t, the idiosyncratic shock ϵ_t, and basis risk $(i(\theta_t) - m(\theta_t, \epsilon_t, H_t))$.

It has been shown that herd dynamics seem to follow a particular growth path where growth is negative if a herd falls below a certain threshold (i.e. if $H_t \leq \bar{H}$), growth is approximately constant for medium levels of herd size (i.e. for $\bar{H} < H_t \leq \overline{H}$), and then positive growth is observed for large levels of herd size (i.e. for $H_t > \overline{H}$) (see Lybbert et al. 2004 and Sieff 1998). To capture these dynamics we allow households to choose between two different production technologies: a low return and a high return technology. The low return technology is analogous in this context to sedentarism, whereas the high return technology can be thought of as the more productive pastoralist production technology. Pastoralism offers higher returns because livestock are brought to better pastures, whereas in sedentarism livestock are constrained to lower quality forage close to the village.4

With sedentarism, we assume that households are able to supplement their incomes with petty trade in the village (for example by selling milk or handicrafts) or by collecting food aid. This supplemental fixed income is denoted as \bar{f}. It can also be interpreted as the transaction costs of pastoralism saved by choosing the low technology. Equation 6 below thus defines the structural form assumed for the production technologies:

$$f(H_t) = \begin{cases} \alpha H_t^{\gamma_L} + \bar{f} & \text{if } H_t \leq \hat{H} \\ \alpha H_t^{\gamma_H} & \text{if } H_t > \hat{H} \end{cases}$$

where $0 < \gamma_L < \gamma_H < 1$. Note that households with smaller herd sizes will optimally choose sedentarism whereas households with larger herds will choose pastoralism. This feature creates nonconvexities in the implicit production function (defined by the outer envelope of the two production technologies). These nonconvexities coupled with borrowing constraints drive the poverty trap mechanisms. Figure 1 shows the general shape of $f(H_t)$ under the assumptions set forth.

We are now ready to specify the household’s objective function. The household is assumed to be risk averse and will maximize the expected intertemporal utility V by choosing consumption and insurance for each time period, with expected utility at time t denoted as u_t which is a function of consumption c at time t. Implicitly, the household is also deciding how much to invest back in the herd for future benefits. For completeness, we specify the following utility function which assumes constant relative risk aversion:

$$u_t(c_t) = \frac{c_t^{1-R} - 1}{1-R}$$

where R is the coefficient of relative risk aversion.

The maximization problem is characterized by the following:

$$V(H_t, I_{t-1}) = \max_{c_t > 0, 0 \leq I_t \leq 1} u_t(c_t) + \beta E[V(H_{t+1}, I_t)]$$

4Toth (2010) offers some evidence that the incentive to engage in mobile pastoralism determines whether a household will become trapped; he posits that households who optimally choose a sedentary lifestyle will fall into a poverty trap whereas those who optimally choose a mobile herding lifestyle will remain above a poverty threshold. We follow the same logic, though the focus of this paper is not why the poverty trap exists.
subject to the equation of motion for herd dynamics (Equation 4) where β is the time discount rate,

$$E[V(H_{t+1}, I_t)] = \int V(H_{t+1}, I_t) \ g(\theta_{t+1}, \epsilon_{t+1}) \ d\theta \ d\epsilon$$

(9)

and $g(\theta_t, \epsilon_t)$ is the joint probability distribution of the covariate and idiosyncratic shock.

The solution to this problem finds the optimal consumption, insurance and investment decisions in each year. In order to solve the problem using numerical methods, we assume a heterogenous population with identical preferences and uniformly distributed initial asset levels.5 Parameters such as the prices and insurance contract details (like the strike point and the value of a TLU) can be specified using observed values in Marsabit.6 The production function will be specified to follow the dynamics outlined in the model.

It is useful to specify the timing of events which must be assumed for the numerical simulation. In the beginning of time t, nature draws an idiosyncratic shock $\epsilon_{i,t}$ for each household i and a covariate shock θ_i which is the same for all households. Then households receive an IBLI payout based on I_{t-1}. Next, the household chooses c_t and I_t (as well as implicitly choosing investment for period t) given state variables θ_i, $\epsilon_{i,t}$, I_{t-1}, and H_t. Note that while θ_i and $\epsilon_{i,t}$ are technically state variables, we suppress both from the value function in order to avoid confusion over whether a household chooses insurance before or after a shock. (The insurance decision I_t follows shock θ_i, but pays out based on the future shock θ_{t+1}.) Instead of explicitly showing θ_i, $\epsilon_{i,t}$, I_{t-1}, and H_t as distinct state variables (which we do in the simulations), we map these four state variables into one by using the total disposable assets described in Equation 4.

There are multiple ways to model the distribution of the covariate weather shock. Initially, we make a grossly simplified distributional assumption.7 To gain intuition, we first assume the distribution of the index perfectly follows weather, so the model assumes perfect insurance. That is: $i_t(\theta_t) = m(\theta_t, \epsilon_t, H_t)$ and there is no basis or idiosyncratic risk. Table 1 shows the parameters used in the numerical simulation.

The solution to the problem can be found by solving a stochastic dynamic programming problem. If the true value of all future consumption were known, then solving the agent’s infinite horizon problem would be straightforward. Instead we use contraction mapping, by which it follows that the Bellman equation has a unique fixed point. We conduct the analysis by comparing two cases. First, by applying the value function iteration method to the Bellman equation of the agent’s decision problem, we derive the optimal consumption

5In order to realistically reflect the risky environment that pastoralists find themselves in, the parameters used for the numerical analysis should be calibrated to data collected in the local setting. This will be necessary if we are interested in the general equilibrium effects of insurance. This can be done using a panel dataset of household surveys conducted in Marsabit in 2009 and 2010. The data includes household level data on household and herd characteristics of 924 households. We leave this step for future work, and instead use knowledge of the local situation to quasi-calibrate as best we can.

6The insurance contract actually depends on the geographical coordinates of the household. As such, the index, indemnity payment and the price of insurance in the previous model should include regional subscripts which were suppressed for simplicity.

7Later analysis will consider calibrating these assumptions to historical data of weather patterns in the area. A similar distributional assumption will need to be made on an idiosyncratic error term once it is included.
and (herd) investment decisions when insurance is permanently mandated (i.e. where a government mandates full insurance in perpetuity). This situation can be thought of as a “pre-commitment” to a lifetime of full actuarially fair insurance. Comparing this situation to an autarkic environment where no formal insurance market exists provides useful insights into the value of insurance. The results of the “pre-commitment” insurance case are presented in Section 4. In Section 5 we relax the assumption of mandated insurance and consider the more realistic case where individuals can choose in every period whether or not they would like to purchase an annual insurance contract.

Comparing the value functions defined by the optimal consumption and investment decisions with and without insurance provides a way to measure the value of the insurance market to the pastoralist. More specifically, we generate a dynamic option value measure of the value of IBLI for heterogeneous households which can be used for welfare analysis. Zimmerman and Carter (1999) provide an example of this approach. They create a household-specific dynamic option value measure for marketable property rights in West Africa. They recognize that the value function of the dynamic programming model contains important information about the utility value of a particular institutional environment for individual agents. They capture this utility value in the form of the option value. Through dynamic stochastic programming they are able to model agent heterogeneity in demand for institutional change while accounting for dynamic rationality and dynamic adaptation to institutional change.

In this case, we can denote V^*_N as the value function in the absence of an insurance market and V^*_I as the value function when insurance is available. Following Zimmerman and Carter (1999), the dynamic option value $z^+(H_t, I_{t-1})$ is then defined as the certain consumption transfer which would just make the constrained (no insurance) value function equal to the unconstrained (with insurance) value function. Formally:

$$V^*_I(H_t, I_{t-1}) = V^*_N(H_t + z^+(H_t, I_{t-1}), I_{t-1})$$

Solving for z yields the welfare gains from the presence of an insurance market. Similarly, the option value can be thought of as the amount that must be taken from the unconstrained household in order to make them equally as well off as the constrained household. This is written as $z^-(H_t, I_{t-1})$ in the following:

$$V^*_I(H_t - z^-(H_t, I_{t-1}), I_{t-1}) = V^*_N(H_t, I_{t-1})$$

Note that equation z^+ is essentially a compensating variation measure of welfare gains whereas z^- corresponds to the equivalent variation interpretation.

An important hypothesis we wish to analyze is whether vulnerable households near a poverty threshold will have a higher option value for insurance. If IBLI prevents such households from falling into a poverty trap from which there is no escape, then we expect they will value it highly. Second, we expect that the presence of an active insurance market will influence dynamically optimal behavior at or around a poverty threshold. This endogenous effect may cause the effective poverty threshold to shift, allowing a greater number of households to reach the high level equilibrium. These factors combined will be reflected in the dynamic option value.
4 The Case of Pre-Commitment Lifetime Insurance

4.1 Optimal Herd Accumulation

Solving the dynamic optimization problem in Equation 8 derives policy functions for individuals with heterogeneous asset levels. It can be useful to simulate the optimal consumption and investment decisions for agents who are subjected to a series of shocks. This allows us to investigate herd dynamics in various settings. We show four primary impacts of actuarially fair insurance on dynamic asset accumulation in this section:

1. **Vulnerability Effect:** Insurance acts as a safety net, offering a reduction in the vulnerability of collapse to the low level equilibrium.

2. **Smoothing Effect:** The path to accumulation involves fewer ups and downs; it is smoother.

3. **Shifting Equilibrium Effect:** An insured herd is likely to reach a higher terminal herd size regardless of initial endowment than its uninsured counterpart.

4. **Shifting Threshold Effect:** The relevant asset threshold below which households collapse to a low level equilibrium is reduced. That is, when assets can be insured, fewer assets are necessary to have a positive probability of reaching the high equilibrium.

As we would expect, a much smaller proportion of the population can be identified as vulnerable (likely to fall to a low equilibrium) when households are insured for a lifetime. This “vulnerability effect” of insurance is most clearly depicted in figure 2 which shows the probability of arriving at a low level equilibrium with and without insurance. Because of the assumption of nonconvexities in the production technology (from which we observe a poverty trap), the probability of approaching the low level equilibrium is 100% for herds that are already below a critical asset threshold. In a sense these households have already collapsed and have no prospects of escape; they are “trapped”. This asset threshold, which appears to be around 7.8 TLU, is commonly referred to in the literature as the Micawber threshold. Notice that because most households below the Micawber threshold do not experience any change in the probability of arriving at a low level asset equilibrium (because they are essentially trapped with or without insurance), these households also do not gain via the vulnerability effect.

The truly vulnerable population is that which has a positive, but less than 100% chance of falling to the low level equilibrium, where a higher probability of collapse indicates greater vulnerability. These households are not trapped, but are at risk of experiencing asset collapse which could send them into a trap. As we would expect, the presence of insurance sharply reduces the number of households which can be classified as vulnerable by this definition. The vulnerability effect is largest for households with asset levels between 7.5 and 8.5 TLU who experience an approximately 50% reduction in vulnerability. Some of these households go from near 100% probability of collapse to almost half that. Others go from extreme vulnerability to 100% protection against catastrophic losses which would otherwise result in a poverty trap. These households seem to benefit greatly from this vulnerability effect.
As asset levels increase, households autarkic vulnerability also decreases, and therefore the reduction in vulnerability decreases. Note that in the absence of an insurance market the probability of collapse remains positive even for large herd sizes. This is in sharp contrast to the case of insured livestock, where the probability of collapse falls to zero once they reach a critical herd size threshold of approximately 8.5. In addition, the critical herd size at which herds appear to collapse with probability near 100% actually decreases slightly when insurance is present. This is our first indication that the relevant threshold changes when an active insurance market is introduced.

The next thing we expect to see is a reduction in the variability of outcomes when households become permanently insured. This is the “smoothing effect” of insurance. This effect is captured by figure 3 which plots the 10th, 25th, 50th, 75th and 90th percentiles of the terminal herd size across simulations as a function of initial herd size under autarky and with IBII. For a given initial herd size, the similarity of the 10th percentile to the 90th percentile (across simulations) is an indicator of low variability across outcomes. In figure 3 we see that the 90th percentile more closely matches the 10th percentile when insurance is available than in autarky. This provides some evidence of a smoothing effect.

In addition to the smoothing effect, figure 3 also suggests a “shifting equilibrium effect” induced by permanent insurance. A cursory glance at the median terminal herd size shows a distinctly elevated high level equilibrium and a smaller but noticeable positive shift in the low level equilibrium when insurance becomes available. Another avenue through which we observe this shifting equilibrium effect is by analyzing the mean herd accumulation paths over a large number of simulations for heterogeneous levels of initial herd size under autarky and with permanent full insurance. We show these average herd accumulation paths in figures 4 and 5.

Based on the assumptions set forth by the model, uninsured households have a hard time accumulating herds greater than 18 TLU. This is in contrast to the average high level equilibrium attainable with insurance: 20.6 TLU after 50 years. This higher level is reached because the effect of negative shocks is reduced. Moreover, uninsured households with an initial endowment below 9 TLU appear, at least on average, to have low growth prospects, many settling into a low level equilibrium of around 4.4 TLU. When households “pre-commit” to a lifetime of full insurance the average path for those with 7.5 TLU or less is still movement toward a low level equilibrium, though the ending herd size of 4.9 TLU after 50 years is slightly higher than the autarky low-level equilibrium. Through this we observe evidence of a shifting equilibrium effect at both the high and low equilibrium levels. This effect is likely a repercussion of the smoothing and vulnerability effects.

Initial endowment clearly matters in both scenarios, and households with a larger initial endowment are likely to end up at a higher herd size in the final period. However, there is a high level of variation observed in the autarky case, especially for those with initial herd size above 8 TLU. The high variability of terminal herd size for households with an initial herd size between 8 and 10 TLU points again to a high level of vulnerability for these uninsured households (vulnerability here again refers to a high probability of collapsing to a low level equilibrium). In contrast, once insurance becomes available, all households with an initial herd size greater than 8.2 TLU on average head toward a high level equilibrium.

\(^8\)We take mean and median herd size over simulations for each initial herd size and each \(t\).
Note that the mean initial herd threshold level for divergence toward the low level equilibrium shifts downward for insured households, implying that more households are able to achieve positive herd growth. Specifically, the probable path for households with assets between 7.6 and 9 TLU is dramatically altered when insurance is introduced. This “shifting threshold effect” seems to imply that insurance would be highly valuable to individuals with 7.6 to 9 TLU because they are suddenly able to achieve positive growth with greater than 50% probability when they insure their herd.

The shifting threshold effect is perhaps more discernible if we return to figure 3 and focus on the median under both scenarios. It should be clear to the reader that households beginning with approximately 7.5-8.5 TLU are able to achieve a much higher terminal herd size with insurance than without. In this way we see that the Micawber threshold (initial asset level necessary to achieve the high equilibrium) appears to shift from 8.5 to 7.5 TLU. We would therefore expect households in this asset range to benefit greatly from insurance!

One final way to ascertain how an insurance market affects the population is to consider the median paths in greater detail. In contrast to the average herd accumulation paths observed in figures 4 and 5, figures 6 and 7 plot the median herd accumulation paths over a large number of simulations for heterogeneous levels of herd size with and without insurance. Once again, these paths demonstrate the extreme vulnerability faced by households in the absence of a working insurance market. Notice that in the autarky case a few seasons of bad shocks can be path altering if it drops households to the low level equilibrium. These paths seem to provide further evidence of all four effects discussed thus far: vulnerability effect, smoothing effect, shifting equilibrium effect, and shifting threshold effect.

By explicitly modeling insurance in the presence of poverty traps, our model provides evidence that the value of insurance depends not only on the commonly considered vulnerability and smoothing effects, but also a shift in equilibrium and threshold levels. These four effects combined will reflect how households value insurance. In particular, the potentially path-altering impacts characterized by the vulnerability and shifting threshold effect may result in a greater willingness to pay for households around the Micawber threshold. The next section expands on this topic.

4.2 The Value of Insurance

We are now ready to compare the value of insurance for households under autarky and in the presence of perfect lifetime insurance. As discussed earlier, to do this we can construct a dynamic option value. Here we consider the option value \(z^+ (H_t, I_{t-1}) \) outlined in Equation 10, that is: the average amount that must be given to an uninsured household to make them equally as well off as an insured household. The alternative option value outlined in Equation 11 provides a similar interpretation and is left out in the interest of brevity. Figure 8 plots the option value as a function of herd size.

Using this measure of a dynamic option value we see that the value of insurance is increasing in assets for households trapped below the Micawber threshold and peaks around 8 TLU. At this point herds destined (on average) for the low level equilibrium in autarky suddenly have a chance of reaching the high level asset equilibrium. The high value for these households comes from exiting out of a poverty trap. This is the value that comes, in particular, from the shifting equilibrium effect, where the Micawber threshold actually
shifts from 8.5 TLU in autarky to 7.5 with insurance. Not only that, these households also experience protection against future collapse. These households (with TLU between 7.5 and 8.5 TLU) benefit from the vulnerability effect more than any other household along the asset spectrum.

The value of insurance appears to fall for households just above the autarkic threshold level. The value of insurance to these households comes largely from a reduction in vulnerability to collapse. This reduced vulnerability, relatively speaking, is not as significant as the reduction in vulnerability for households with slightly smaller herds. Moreover, this effect is not nearly as valuable as the path-altering value for households just below the autarkic Micawber threshold. Nonetheless, the objective value remains important. These households still value insurance more highly than trapped households.

The constructed option value also shows that households with larger asset levels have much to gain from insurance, indeed they have much to lose without it. In the previous section we showed that these households can move more safely and smoothly toward an improved high level equilibrium when insurance is present. Such households benefit from the vulnerability, shifting equilibrium and smoothing effects.

One problem with the dynamic value function we present here is that it is expressed in asset space. However, we know that a small change in assets around the Micawber threshold can have path-altering implications. For example, giving 1 TLU to a household just below the threshold allows them to escape the poverty trap, completely altering their dynamic path. On the contrary, taking 1 TLU from a household just above the threshold drops the household asset level below the threshold toward ultimate herd collapse. This means the shadow price of liquidity, and assets, are relatively high for “threshold” households (a point that will be demonstrated even more clearly in the next section). In other words, the marginal benefit of an additional asset varies across asset space, and is particularly high for households holding a level of assets near the Micawber threshold. Hence, using assets as a unit of valuation may be problematic.

A second problem with the option value presented is that it only allow nonnegative values for $z_s^+(H_t, L_{t-1})$, where the s subscript describes a calculated z^+ for a given simulation. We then take the average of the nonnegative z^+_s across all simulations. However, we know that from a static standpoint, in a good year, (i.e. no extreme negative shock) a household may wish it had decided not to insure. This is because they paid a premium but didn’t receive a payout. When the price of liquidity is high, this can be path-altering if paying the premium pushes households below the threshold. In this case, households would be much worse off with insurance than without. This is a key result of both Chantarat et al. (2010) and Kovacevic and Pflug (2010), and as such should not be overlooked.

We consider each point in turn. The first problem can be addressed by considering a second measure of valuation: the amount of cash transfer necessary in every period in order to make an uninsured household as well off as an insured household. To calculate this numerically, we iterate over small increases in consumption levels to find the amount of additional cash, used for consumption, that will make the autarkic value function equal to the pre-commitment insurance value function. We denote the average transfer as δ. Since the cash transfer goes directly to consumption (with no option to invest) we avoid the issue of an option value expressed in asset space. We can think of this intervention as food aid,
which is often available in northern Kenya.9 The results are shown in figure 9. In order to give the magnitude of transfer meaning, we also plot the cost of a 15\% insurance subsidy.

Figure 9 shows that the value of insurance is increasing up to the threshold, then exhibits a weak dip, after which it appears to be an increasing concave function. The peak around 7.5 to 8.5 TLU prominently exhibited in the option value figure 8 disappears. This largely reflects the problem of variable shadow prices of assets across heterogeneous herd sizes. However, it also reflects a new problem: optimal behavior is restricted. By construction, the cash transfer can only be used for consumption, which means it can’t be used to alter a dynamic path. Section 5.2 attempts to remove some behavioral restrictions by allowing households to partially insure, and adjust optimal investment and consumption decisions accordingly.

Before moving to Section 5, we need to address the problem of considering only nonnegative values for \(z^*_t(H_t, I_{t-1}) \). This can be accomplished in the cash transfer framework by allowing transfers \(\delta_s \) to be negative. That is, if a household is better off without insurance in a given simulation (due to a series of good shocks), then insured households can receive a transfer rather than the other way around, resulting in a negative cash transfer for that simulation. Averaging \(\delta_s \) across simulations then results in a \(\tilde{\delta} \) which can be either positive or negative. We would expect that the non-negativity constraint imposed in the first cash transfer would primarily affect households around the threshold, where paying a premium in a good year can have path-altering consequences. This is indeed what we find.

Figure 10 presents this alternative cash transfer value function, \(\tilde{\delta} \). The glaring result is that, \textit{averaging across simulations}, uninsured threshold households would rather give up consumption than be forced to \textit{fully} insure. This reflects the fact that some households fall below the threshold while paying premiums in a good year. But that is not the case for all households. In a bad year, insurance pays off and keeps households on a positive trajectory. In fact, we know from figures 4 and 5 that on average insurance does keep these households on a positive trajectory, and actually increases their chance of reaching the high equilibrium. Figure 10 simply says that when we average across simulations, insured threshold households may actually require a small transfer or subsidy in order to benefit from insurance. Paying the premium for several subsequent good seasons when investment could otherwise go a long ways could be detrimental if it causes households to fall below the Micawber threshold rather than moving further from it. In fact, the value of \(\delta \) calculated is not starkly negative, but rather rests very close to zero.

Notice that the alternative cash transfer is increasing from about 8.5 TLU on. Remember that 8.5 is the autarkic Micawber threshold. More importantly, it is the point where insured households have almost zero chance of collapsing to the low level equilibrium.

Who gains from insurance? The findings suggest that everyone can gain from insurance, as demonstrated by the positive option value across the entire spectrum of initial herds. However, it is not necessarily true that everyone will benefit. The answer is blurred by two existing constraints: First, a heterogeneous shadow price of liquidity blurs our interpretation of the option value. Second, removing this constraint means limiting behavioral change, which is also largely restrictive. In order to address these issues, we need to allow households

9Even in the context of food aid the assumption that the transfer goes directly to consumption is a lofty one made in order to simplify interpretation.
to change optimal behavior once insurance becomes available.

In the next section we relax the assumption of pre-committing to a lifetime of insurance and instead allow individuals to choose whether or not they will purchase insurance in any given year. This also allows us to create a formal measure of willingness to pay which can help to answer this relevant question of who values insurance most highly.

5 The Case of an Annual Insurance Decision

It may not be optimal to perpetually insure, as in the case considered in the previous section. Moreover, it may not always be optimal to insure the whole herd, even when it is optimal to insure part of the herd. Even if choosing to insure isn’t optimal in a given period, it is possible for a household to dynamically benefit from insurance. This is true if the presence of an insurance market alters a household’s optimal decision for consumption and investment based on expectations about the future. To address these issues, we once again solve the household’s optimal decision problem, this time allowing households to choose consumption, investment, and whether or not they would like to purchase an annual insurance contract. In this first subsection we limit the insurance choice set to zero or full insurance in order to derive a willingness to pay measure for insurance. We then relax the restriction of $I_t = [0, 1]$ in Section 5.2, where we consider optimal decisions when given the option of partially insuring the herd.

5.1 Willingness to Pay for Full Insurance

In order to construct a formal measure of a household’s willingness to pay for insurance, we iterate over optimal insurance purchase decisions for a vector of mark up rates on the actuarially fair insurance premium. This allows us to clearly see for whom it is optimal to buy insurance at various prices. For simplicity, we assume that the insurance decision I_t is binary, where 1 equals full insurance and 0 implies no insurance. That is, $I_t = [0, 1]$. We then denote the value function when choosing to fully insure at time t as $V(H_t; I_t = 1)$, and the value without insurance as $V(H_t; I_t = 0)$. Because we are iterating over different prices, we add a mark up rate to the value function to express the price of insurance whenever the household purchases insurance. Denoting the mark up rate on the actuarially fair insurance premium p by λ, we define the willingness to pay for an agent with a herd size of H_t as the amount, $(1 + \lambda)p$ which satisfies the following:

\begin{align*}
V(H_t, \lambda ; I_t = 1) &\geq V(H_t ; I_t = 0) \quad \text{for all } \lambda \leq \bar{\lambda} \quad (12) \\
V(H_t, \lambda ; I_t = 1) &< V(H_t ; I_t = 0) \quad \text{for all } \lambda > \bar{\lambda} \quad (13)
\end{align*}

We compute $\bar{\lambda}$ as follows. First, we discretize λ into $\{-0.4, -0.3, \ldots, 0.6\}$. Second, for each value of λ, we compute the optimal consumption, investment and insurance purchase decisions for all possible sets of state variables. Third, for each value of the state variables, we search the value of $\bar{\lambda}$ at which the agent switches the optimal insurance purchase decision and thus conditions (12) and (13) hold.

\footnote{This assumption is relaxed in Section 5.2.}
Figure 11 shows $\overline{X}(H_t)$. We observe a willingness to pay that is greater than the actuarially fair price for households safely above the Micawber threshold, as well as for households far below. However, households in the neighborhood of the Micawber threshold prefer no insurance to full insurance (keeping in mind that partial insurance is still an option). This seems to match the intuition gleaned from the alternative cash transfer, $\tilde{\delta}$. Threshold households have a high shadow price of liquidity, a point which is captured clearly in the theoretical models put forth by Chantarat et al. (2010) and Kovacevic and Pflug (2010), both of which suggest that paying the premium can put households below the threshold, making them worse off, especially when the marginal benefit of investing is high. While we know threshold households stand to benefit largely from both the threshold and shifting equilibrium effects of insurance, it seems that the cost of full insurance is too much for households when the shadow price of liquidity is so high.

While informative, these results do not necessarily imply that threshold households are unaffected by insurance, especially given the path-altering implications that insurance offers to these same households. In fact, it’s quite possible that full insurance may not be optimal, whereas partial insurance is, a question we address in the section that follows.

5.2 The Partial Insurance Decision

In reality, households are given the option of insuring not only the whole herd, but any fraction of the herd. To replicate reality as closely as our model allows, we discretize insurance purchase decisions as a fraction of the herd into \{0, .1, .2, ..., 1\} and resolve Equation 8 using the actuarially fair price of insurance.

Figure 14 plots the optimal partial insurance decision for households with heterogeneous herd sizes. The results closely match the shape of the willingness to pay (for full insurance) curve, with one important distinction. While households can choose zero insurance, it is optimal for all households, regardless of their proximity to the asset threshold, to insure at least some portion of the herd. In line with the intuition gleaned from the original dynamic option value presented in figure 8, this optimal policy function suggests insurance can engender positive welfare benefits for all households. The policy function for threshold households dictates a low level of insurance (only 10% of the herd), whereas households above the threshold insure between 30% and 100% with proportion insured increasing as asset levels move away from the threshold. Threshold households clearly benefit from some protection, but the real impact of insurance requires taking a deeper look at the budget constraint and optimal behavior.

Remember that a household must choose to allocate their cash on hand between consumption, insurance, and investment and back into the herd. Threshold households have a high shadow price of liquidity. In the absence of insurance, these households could choose to forgo consumption in order to build up the herd. But in a risky environment, it may not seem worth it. Even if they are able to get above the threshold, a bad shock can send them right back to where they started. However, in the presence of insurance, the promise of a safety net which prevents against future collapse can actually incentivize investment. If herds can be protected once they reach the asset threshold, then it’s more rewarding to attempt to rebuild the herd. If they are able to reach a new threshold herd level, it then becomes optimal to insure.
This is exactly what we see. Figures 12 and 13 show the optimal investment and consumption choices under autarky and in the presence of an insurance market. Threshold households insure only a small portion of their herd, but their optimal consumption and investment also change. They consume less and invest more. These households benefit dynamically from the very presence of an insurance market, even if they barely insure today. The possibility of insuring more once their herd gets big enough may be enough incentive to take on the extra risk of increased investment. These households may choose to suffer through some tough low-consumption years as a result, but in the long run they can be made better off.

An opposite behavioral effect results for households above the asset threshold. In the absence of a functioning formal insurance market, these households informally “insure” by investing more in their herds, while forgoing consumption. When formal insurance becomes available, households instead choose to use their cash on hand to purchase insurance and consume more in good years, forgoing additional investment. Such households continue to invest, but they invest less than if they were uninsured. This finding supplements findings by Francesca de Nicola (2011) who also predicts a reduction of investment when insurance is introduced.

This behavioral effect is especially pronounced once households reach the high level equilibrium. At that point, the marginal benefit of investing is low, so households prefer to allocate their resources toward consumption. In addition, these households display a remarkably higher willingness to pay for insurance in order to maintain their high level of welfare.

These results suggest the importance of considering the asset poverty trap in analyzing demand for insurance. If such an asset threshold actually exists, and households are able to perceive the threshold and its implications, then such a threshold will have huge implications for the optimal insurance purchase decision.

6 Poverty Dynamics in Marsabit

While modeling the insurance decision in the context of livestock insurance for pastoralists, thus far we have not explicitly considered what the benefits will mean for poverty dynamics of a specific population. Rather, up to this point our results apply more generally to asset insurance in the context of poverty traps. In general, the model develops intuition toward understanding how asset insurance will influence behavior when dynamic asset thresholds may induce poverty traps, and how such asset thresholds affect demand for asset insurance. This is useful in a broad context.

However, there may also be some benefit to an attempt toward defining the implications of this model in a specific context, especially with regard to poverty dynamics. We make that attempt here, with a few disclaimers. Specifying the precise structure of the poverty trap mechanism is beyond the scope of this paper, and we are forced instead to use the basic assumptions of production technologies. We also make some large assumptions about the structure of shocks, an area which we may be able to improve upon in the future. Despite some obvious lofty assumptions, we use empirical data of the distribution of herd sizes in Marsabit district of northern Kenya. The data includes a random sample of households in
Marsabit district in 2011.

Using the empirical livestock distribution across households, we then simulate the optimal consumption and investment decisions for households who are subjected to a series of shocks. We do the same for households who are faced with a decision of insuring any fraction of their livestock herd. Doing so allows us to also consider the evolution of various indicators of economic performance with and without insurance. For this analysis we focus on 3 common indicators: the poverty gap, poverty headcount and GDP.

The estimate of GDP is fairly straightforward. It is simply the sum of individual production. In our case we use:

\[GDP_t = \sum_{i=1}^{n} f(H_{i,t}) \]

where \(n \) is the total number of individuals in the sample population.

The other two measures, poverty gap and headcount, are in the family of Foster-Greer-Thorbecke (FGT) measures, and are calculated as follows:

\[P^y_\gamma = \frac{1}{n} \sum_{y_j < y_p} (y_p - y_j)/y_p^{\gamma} \]

Here, the income poverty line \(y_p \) is the income generated by the asset level at which the kink in the implied production technology occurs. Individual \(j \)'s income \(y_j \) is estimated using \(f(H_t) \), and \(\gamma \) is the FGT sensitivity parameter. For the poverty headcount, \(\gamma \) is equal to zero, and for the poverty gap \(\gamma \) equals 1.

The predicted evolution of these three economic indicators in Marsabit with and without IBLI are presented in figure 15. Looking first at the poverty gap, we see that the gap reduces with livestock insurance. This is a result of the shifting equilibrium effect. Because the low level equilibrium shifts upward, households are closer to the poverty threshold. In fact, the estimated gap is biased upward if we consider also the shifting threshold effect which reduces the asset level, and thereby the income level necessary to escape the poverty trap. Our calculation instead holds the threshold income level \(y_p \) constant. If we allowed \(y_p \) to shift once insurance was made available then we would expect that the gap would be even smaller.

The poverty headcount steadily decreases with IBLI, whereas it increases under the autarkic setting. Because households just below the asset threshold are able to move out of the poverty trap once IBLI is available, we observe a reduction in the number of households below the poverty income threshold \(y_p \). Furthermore, once out of the trap, these households are no longer vulnerable to collapse because they can insure. On the contrary, uninsured households remain vulnerable to collapse. This susceptibility to collapse, combined with an inability to escape once collapsed, is why we see an increase in the poverty headcount in the absence of IBLI.

Finally, we consider the sum of household production, to obtain an estimate of economy GDP. Here again we see benefits due to IBLI, though the impacts are somewhat small in magnitude and not immediately observed. These results suggest GDP approximately 1% higher after 10 years, and 3.6% higher after 25 years. Notice that the immediate effect seems to be a lower GDP with IBLI for the first 5 years. This can be explained by the tradeoff.
between investment and insurance that occurs as households shift from investment to buying insurance premiums. This tradeoff eventually pays off in GDP terms, but has a clear effect on output in early years.

7 Concluding Remarks

Households in developing countries often suffer from a missing insurance market. In January 2010 index-based livestock insurance (IBLI) was introduced to pastoralists in northern Kenya in order to fill this gap. In this paper we use dynamic programming techniques to generate an option value measure of the value of IBLI for individuals with various levels of herd size. This allows for an assessment of welfare gains from the institutional innovation, as well as a theoretical framework for an empirical demand analysis.

In particular, the model developed in this paper provides a theoretical framework for analyzing how IBLI will influence dynamically optimal behavior at or around a poverty threshold. We find that when households pre-commit to actuarially fair insurance for a lifetime, far fewer herds are vulnerable to collapsing to a low level equilibrium, and some herds otherwise trapped at a low level equilibrium suddenly have a chance to “get over the hump”. We also show that the average equilibrium levels are substantially higher with insurance. Together these findings imply that the option value of insurance depends not only on the benefits of income or asset smoothing, but also on a reduction in vulnerability, and the ability of the agent to potentially achieve higher future welfare.

By looking at optimal consumption, investment and insurance purchase decisions we find that households near a critical asset threshold will be unwilling to purchase full insurance at the actuarially fair price. However, when given the option to partially insure, these households will insure in small amounts. Such households find it optimal to forgo consumption and increase investment in an attempt to reach the critical asset threshold. If they have good fortune and reach the threshold, it then becomes optimal to insure a larger portion of the herd in an effort to prevent against future collapse. In this way, these initially “trapped” households can benefit greatly from insurance even if they choose not to insure at the outset.

Understanding how behavioral choice changes in the presence of IBLI is critical to understanding the effect of IBLI and other similar products seeking to address long term poverty. Furthermore, addressing the impact in the context of poverty traps can provide insight that is otherwise overlooked. These considerations can dramatically change the results of any analysis assessing the effect of this type of product. When we apply the model’s predictions to the empirical asset distribution in Marsabit, we find evidence of a reduction in the poverty headcount and gap, as well as increased GDP levels in the long run.

As index-based risk transfer products become popular in developing country settings, a solid theory of the dynamic effects, both in terms of optimal choices and welfare gains, is warranted. This paper seeks to address this important issue.
References

Appendix A: Tables and Figures

Table 1: Parameters used in Numerical Simulation

<table>
<thead>
<tr>
<th>Production Technology Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\gamma_l=0.35$</td>
</tr>
<tr>
<td>$\gamma_h=0.55$</td>
</tr>
<tr>
<td>$f=1.5$</td>
</tr>
<tr>
<td>$\alpha=1.24$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mortality Function Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\overline{m}=0.3$</td>
</tr>
<tr>
<td>$m=0.05$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Utility Function Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\beta = 0.95$</td>
</tr>
<tr>
<td>$R = 1.5$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Insurance Contract Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>$p=0.0325$</td>
</tr>
<tr>
<td>$s=0.15$</td>
</tr>
<tr>
<td>$V_L=15,000$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Random Shock</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\theta={-20,-10,0}$</td>
</tr>
<tr>
<td>$\epsilon=0$</td>
</tr>
<tr>
<td>$g(\theta)={0.1,0.25,0.65}$</td>
</tr>
</tbody>
</table>
Figure 1: Livestock Production Technologies
Figure 2: Probability of Collapse to a low level equilibrium with and without IBLI
Figure 3: Herd Transition: Initial to Terminal

Autarky Herd Transition: Initial to Terminal

Herd Transition with "Pre-Commitment" Lifetime Insurance: Initial to Terminal
Figure 4: Mean herd accumulation paths for various initial herd sizes
Figure 5: Mean herd accumulation paths: Closer look at asset thresholds
Figure 6: Median herd accumulation paths for various initial herd sizes

Median Herd Size under Autarky

Median Herd Size with "Pre-commitment" Lifetime Insurance

32
Figure 7: Median herd accumulation paths: Closer look at asset thresholds
Figure 8: Dynamic Option Value

Figure 9: Amount of cash transfer necessary in every period to make an uninsured household as well off as an insured household, compared to cost of 15% subsidy on price of insurance
Figure 10: Alternative cash transfer, relaxing the non-negativity constraint

Figure 11: Willingness to Pay for IBLI
Figure 12: Optimal Investment Decisions for various herd sizes

Figure 13: Optimal Consumption Decisions for various herd sizes
Figure 14: Optimal Insurance Coverage
Figure 15: Evolution of Poverty Measures

Evolution of Poverty Gap

Evolution of Poverty Headcount

Evolution of GDP